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Abstract. In this paper we propose an algorithm using only the values of the objective function 
and constraints for solving one-dimensional global optimization problems where both the objective 
function and constraints are Lipschitzean and nonlinear. The constrained problem is reduced to an 
unconstrained one by the index scheme. To solve the reduced problem a new method with local tuning 
on the behavior of the objective function and constraints over different sectors of the search region 
is proposed. Sufficient conditions of global convergence are established. We also present results of 
some numerical experiments. 
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gence. 

1. Introduction 

Global optimization problems in different statements are intensively investigated 
by many authors (see [1] - [15], [20], [25] - [29]). In this paper we consider the 
global optimization problem with nonlinear constraints 

min{g~+l (x ) : x  C [a, b], gj(x) < 0,1 ~ j  < m}, (1) 

where gj(x), 1 _< j _< m + l, are multiextremal Lipschitz functions, with the 
constants/(3. > 0 i.e. 

] g j ( x ' ) - g j ( x " ) I < K j i x ' - x " i , x ' , x ' C [ a , b ] , l < _ j < m + l .  (2) 

We designate as 

Q1 = [a,b],Qj+l = {x c Qj : gj(x) < 0}, 1 _< j _< m, (3) 

subdomains of the interval [a, b] corresponding to the set of constraints from (1). 
Thus, we obtain inclusions 

Q1 D_ Q2 D_ ... ~_ Qm D_ Qm+1. 

We shall suppose here in after that the feasible region Q~+I 7~_ < and the subdo- 
mains Q j, 1 <_ j _< m + 1, have no isolated points. Using this designations we can 
rewrite the problem (1), (2) as 

min(gm+l ( x ) : x  E Qm+l }. (4) 
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This problem may be reformulated using so-called index scheme proposed origi- 
nally in [10, 23] (see also [22]). The scheme is an alternative to traditional penalty 
methods. Instead of combining the objective and constraint functions into a penal- 
ty one, the scheme considers constraints one at a time at every point where it 
has been decided to calculate gm+l (Z). The constraint i is calculated only if all 
inequalities 

9 j (x )  _< O, 1 ~ j  < i ,  

have been satisfied. In its turn the objective function gm+l (x)  is computed only 
for that points where all constraints have been satisfied. Another important advan- 
tage of the index scheme is that it avoids the need to set penalty parameters and 
the related need to scale the objective function and constraints so that they are 
commensurate. 

Let us present the index scheme. We juxtapose to every point of the interval 
[a, b] an index 

v = v ( x ) , l  < _ u < _ m + l ,  

which is defined by the conditions 

g j (x )  < O, 1 < j <_ v - 1,a~,(x) > 0, (5) 

where for v = m + 1 the last inequality may be omitted. Consider an auxiliary 
function p(x)  defined over the interval [a, b] as follows 

= gu(x)  - { 0  i fv(x)  < m + l 
~ ( x )  

g * + l  i f  v (x )  = m + 1 (6) 

where gm+i is the solution of the problem (1), (2) (or of the problem (2)-(4)). Due 
to (5), (6) the function ~(x) has the following properties" 

i. ~(x) > 0, when v (x )  < m + I; 
ii. qo(x) > 0, when v (x )  = m + 1; 

iii. ~(x) = 0, when v (x )  = m + 1 and gm+l (x)  = gm* +1" 
Thus, the global minimizer of the constrained problem (1), (2) coincides with the 
solution x* of the following unconstrained problem 

~(x*) = min{~(x) �9 x e [a, b]}, (7) 

and gm+l (x*) = gin+* 1" Obviously gin+* 1 is not known. Numerical methods pro- 
posed to solve this problem (i.e. to find an estimate of g*+l  ) have been presented 
in [10], [22], [23]. 

In this paper for solving the problem (7) we propose a new method based on the 
information algorithm with local tuning (see [17]) proposed for solving unconst- 
rained problems. The main idea is to tune the algorithm on the objective function 
and constraints behavior estimating local Lipschitz constants for the functions 
gj (x), 1 _< j _< m + 1, over different sectors of the search region [a, b]. It has been 
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demonstrated in [16]-[18] that using local information can accelerate the global 
search significantly. 

The scheme of the new method is described in the next section. A convergence 
analysis of the algorithm is contained in Section 3 where sufficient conditions of 
global convergence are established. Then, we present results of some numerical 
experiments collected in Section 4. We compare performance of the new method 
with some algorithms taken from literature. Finally, the last section concludes the 
paper. 

2. Description of the Algorithm 

We shall call here in after the operations of choosing a point x E [a, b], and evalua- 
tion ~(x) at this point as iteration o f  the algorithm. To start we execute two initial 
iterations at the points x ~ = a and x 1 = b. Suppose now that k iterations have been 
already done by the method. The choice of the point x k+l , k _> 1, of the (k + 1)-th 
iteration is determined by the algorithm presented below. 

Step 1. The points :co, . . . ,  x k of the previous k iterations are renumbered by sub- 
scripts as follows 

a = x o  < x l  < . . .  < xi  < . . .  < x~ = b .  

Step 2. With each point xi ,  0 < i < k, we associate the index ui = u (x i )  and the 
value 

zi = g~,~(xi) - { O i f u i < r n + l  
z* i f ~ , i = m + l  

where 

z* = min{gm+l(X i )  : O < i < k, ui = m +  1}. 

Here the values zi and z* estimate the values ~(xi) and 9"+1 from (6). 
Step 3. Calculate the low bounds #j of the values K j  from (2) 

#j = max{[ zp - Zq [ (Xp - Xq) -1 : 0 < q < p < k, up = Uq = j } ,  

where 1 < j < m + 1. In all cases when #j can not be calculated, set #j = 0. 
Step 4. For each interval (x i -1 ,  x i ) ,  1 < i < k, calculate the following values 

Mi  = max{X/, 7i} (8) 

which estimates the local Lipschitz constant over the interval (x i -1 ,  x i ) .  The  
values Ai and 7/reflect the influence on M / o f  the local and global information 
obtained in the course of the previous k iterations. The values introduced in 
(8) are calculated in the following way 

Ai = max{li, ci, r i} ,  (9) 
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where 

[ z i - z i - l [  ( x i - x i - 1 ) - I  if i>_ 1 , u i = U i _ l  
ci = 0 otherwise 

[ zi-1 - z i - 2 [ ( x i - 1  - xi-2) -1 i f i  _> 2, ui_2 = ui-1 >__ ui 
li = 0 o t h e r w i s e  

[ z i + l - z i l ( X i + l - X i )  -1 i f i _ < k - l , U i + l = U i > _ U i _ l  
r i  = 0 o t h e r w i s e  

The second component of (8) is calculated as 

~/i = I~j(xi - x i - 1 ) / x ~ a x , j  = max{ui, ui-1 }, 

where 

X~ nax = m a x { x / -  x i - 1  : max{u/, ui-1} = j ,  1 < i < k}. 

If Mi < ~, set Mi = ~, where ~ > 0 is a small number - the parameter of the 
method reflecting our supposition that the functions gj ( z ) ,  1 <_ j < m + 1, 
are not constants over the interval (zi-1, z i ) .  

Step 5. For each interval (xi-1, zi  ), 1 < i < k, calculate the characteristic o f  the 
interval 

r M i A i  + (zi - z i - 1 ) 2 ( r M i A i )  -1  - 2 ( z i  + z i - 1 ) ,  Pi = Pi -1  

R(i)  = 2 r M i A i  - 4 z i ,  ui > ui-1 (10) 
2 r M i A i  - 4 z i - 1 ,  u i -1  > ui 

where 

A i  ---- Xi - X i - 1  (11) 

and r > 1 is a real value - the reliability parameter of the method. 
Step 6. Execute the (k + 1 )-th iteration at the point 

= (xt + X t - l ) / 2 -  { 0 i f  ut ~ u t -1  (12) x k + l  
(zt - z t - 1 ) (2 rMt )  -1 otherwise 

where 

t = min{argmax{R(i) : 1 < i < k}}. (13) 

Let us comment the algorithm. The information algorithms are derived as opti- 
mal statistical decision functions within the framework of a stochastic model rep- 
resenting the function to be optimized as a sample of a random function. The 
characteristic R(i )  in terms of the information approach (see [20, 21]) may be 
interpreted (after normalizing) as the probability of finding global minimizer at the 
interval (x i -1 ,  xi).  Speaking in an informal manner we can say that the first item in 
all three expressions for characteristic in (10) controls the fact that the probability 
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to find a global minimizer is higher in wide intervals. The same is valid for that 
intervals where the values zi-1, zi are lower (the last items in the expressions). The 
second item in the first expression (which is used when both the points xi-1, xi 
have have the same index) increases probability of finding a global minimizer for 
intervals where ( zi - zi-1)2(r MiAi )  -1 

The main point of the new algorithm is the following. For every subinterval 
(xi-1, xi), 1 < i < k, we do not use global estimates #j of the global Lipschitz 
constants Kj,  1 _ j _< m + 1, from (2) but determine local ones Mi, 1 < i < k, 
from (8). The values Ai and 7i reflect the influence on Mi respectively the local and 
global information obtained in the course of the previous k iterations. When the 
interval (xi-1, xi) is small, then "yi is small also and due to (8) the local information 
represented by Ai has the major importance. We calculate Ai considering the 
intervals (Xi_2, Xi- 1 ), (Xi- 1, Xi), (Xi, Xi+ 1 ) as that ones which have the strongest 
influence on the local estimate (see (9)). When the interval (xi-a, xi) is very wide 
the local information is not reliable and the global information represented by 7i 
is used. 

Note that the method proposed here uses the local information over the whole 
search region [a, b] in the course of the global search both for the objective function 
and constraints (being present in a hidden form in the auxiliary function ~(x)) in 
contrast with techniques which do it only in a neighborhood of local minima after 
stopping their global procedures (see e.g. [15]). 

3. Sufficient Conditions of Global Convergence 

In this section we demonstrate that the algorithm proposed converges to the global 
solution of the unconstrained problem (7) and, as consequence, to the global solu- 
tion of the initial constrained problem (1), (2). To proceed we need the following 
result. 

LEMMA 1. Let Yc be a limit point of  the sequence { x k } generated by the algorithm 
proposed and i = i ( k ) be the number of an interval ( x i -  t , xi ) containing this point 
in the course of the k-th iteration. Then, for Ai  from (11) and R(i) from (10) we 
obtain that 

lim Ai(k) = 0 (14) 

and for every 5 > 0 there exists a number N(5), such that 

R(i(k))  < 5 (15) 

for all k >_ N(5). 
Proof The point x k+l from (12) falls into an interval (xi-1, xi) (where i(k) = 

t(k) is determined by the formula (13)) and divides this one into two subintervals 

(Xi-1, x k + l ) ,  (X k+l,xi) 
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for which the following inequality 

max{(xi - xk+l), (x k+l -- xi-1)} < a(xi -- xi-1) (16) 

holds when 0.5 < a < 1. In the case ut 7s ut-1 we obtain (16) immediately from 
(12) taking a = 0.5. In the opposite case from (8) and (9) it follows that 

[ Zt -- Zt-1 I <~ M t ( x t  - x t - 1 ) ,  ut = 11t-1. (17) 

From this inequality, (12) and the fact that r > 1 we can conclude that (16) is true 
when 

o~ < (r + 1)/(2r) < 1. 

Thus, (16) has been proved. Now, considering (16) together with existence of a 
sequence converging to 2 (this point is a limit point of {xk}) we can deduce that 
(14) holds. Note, that in the case when two intervals containing the point 2 there 
exist (i.e. when :~ E {xk}) the number i = i(k) is juxtaposed to the interval for 
which (14) takes place. 

Let us demonstrate (15). From (10) and (17) we obtain 

R(i(k)) <_ 2AirMi, 

taking into account that T(x) > O. This inequality and (14) lead to (15), because 
Mi <_ Kj, where Kj is from (2) and j = Yi. Lemma has been proved. 

THEOREM 1. Let x* be any solution of the problem (7) and j = j(k) be the 
number of an interval (x j_ 1, x j) containing this point in the course of the k-th 
iteration. Then, if for k >_ k* the condition 

> ~ Cj + ~ / C y -  D 2 ifuj-1 = vj 
r M j  (18) 

( 2Cj  i f  p j -1  7 s uj 

takes place, the point x* will be a limit point of {x k }. The values Cj and Dj used 
in (18) are defined as follows 

Z j - 1 / ( X *  - - X j - 1 )  i f P j - 1  > Pj 
Cj  = m a x { z j _ I / ( X *  - X j _ l ) , Z j / ( x  j - x*)}  i f p j - 1  = yj (19) 

z j / ( x  5 - x*) if j_l < vj 

I Zj -- Z j -  1 I / ( X j  - - X j - 1 )  i f ~ j - 1  ~- LIj 
Dj = 0 otherwise (20) 

Proof. Consider the case Pj-1 "-- -  /Yj. Due to (19) we can write 

Z j -  1 ~__ C j ( x *  - X j _ l )  , 

zj < C (xj - z * ) .  

(21) 

(22) 
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Then, from (21) and (22) we obtain 

Zj q- Zj_ 1 < C j ( x j  - X j_ l ) .  

Let us estimate the characteristic R ( j  (k)) of the interval (x j_  1, x j). Using (20) 
and the last inequality we deduce 

R( j ( k ) )  > (xj  - X j _ l ) ( r M j  + D2(rMj )  -1 - 2Cj). 

Now, due to (18) we can conclude that 

R( j ( k ) )  > 0. (23) 

In the case uj_l > uj the estimate (21) takes place due to (19). From (10) it 
follows that 

R( j ( k ) )  >_ 2(xj  - X j_ l ) ( rMj  - 2Cj),  

and, consequently, taking into consideration (18) the inequality (23) holds in this 
case also. Truth of (23) for ~'y-1 < uj is demonstrated by analogy. 

Assume now, that x* is not a limit point of the sequence {xk}. Then, there 
exists a number Q such that for all k _> Q the interval ( X j _ l ,  x j ) , j  = j (k ) ,  is not 
changed, i.e. new points will not fall into this interval. 

Consider again the interval (x~-l, xi) from Lemma 1 containing a limit point 
2. It follows from (15) that there exists a number N such that 

R(i(k)) < R( j (k) )  

for all k > k* = max{Q, N}. This means that starting from k* the characteristic 
of the interval (xi-1, xi), i = i(k), k >_ k*, is not maximal. Thus, a trial will fall 
into the interval (x j_  1, x j). But this fact contradicts to our assumption that x* is 
not a limit point. 

4. Numerical Experiments 

For conducting numerical experiments we have constructed 6 test problems with 
multiextremal objective functions and constraints using functions proposed in [7] 
for testing one-dimensional global optimization algorithms. All test problems (each 
problem i is presented in the corresponding figure i, 1 _< i _< 6) have a single 
constraint. In all the problems solution of the constrained problem is unique and 
does not coincide with the unconstrained one. The objective functions in the figures 
are indicated by the arrow and the letters "OF". Admissible regions are shown by 
the thick lines. 

As objective functions and constraints have different domains of definition we 
have transform some of them to inscribe in the region a < x < b, rain _< f ( x )  <_ 
max, where the values a, b, rain, max are defined for every function. Below we 
present functions taken from [7] and then their transformations. 
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P r o b l e m  1. O b j e c t i v e  function:f  (x) = ( 3 x -  1 . 4 ) s i n  18x ,  x E [0, 1.2]. 
T r a n s f o r m a t i o n  : a = 0, b = 1.2,  m i n  = - 2 ,  m a x  = 1.5. 

C o n s t r a i n t :  g(x) = - e  - x  s in27rx ,  x E [0, 4]. 

T r a n s f o r m a t i o n  : a = 0, b = 1 . 2 , r a i n  = - 1 . 5 , m a x  = 1.2. 

S o l u t i o n  : x* = 0 .31 ,  z* = - 0 . 2 8 9 .  

Fig. 1 Problem 1. 

P r o b l e m 2 .  O b j e c t i v e  f u n c t i o n  : f (x)  = - ~ 5 = 1  k s i n ( ( k  + 1 )x  § k ) , x  E 

[-lO, 10]. 
T r a n s f o r m a t i o n  : a - -  - 1 0 ,  b ---- 10, m i n  ---- - 1 2 . 0 3 , m a x  = 14 .84 .  
C o n s t r a i n t :  g(x) = I x 6  --~52X5 _.]_ ~_6~ c39~4 ..}_TO; c71  -3  _~_6~79-2 -i--- 0.1 ,  x ~ [ - 1 . 5 ,  11]. 

T r a n s f o r m a t i o n :  a = - 1 0 ,  b = 10, m i n  = - 1 , m a x  = 5. 

S o l u t i o n  : x* = 9 .81 ,  z* = - 3 . 7 3 5 .  

vl !,vvvv t 
I' 

] 

OF -~ 

VvvV'  .:IAA A 

Fig. 2. Problem 2. 
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P r o b l e m 3 .  O b j e c t i v e  f u n c t i o n  �9 f ( x )  = - ~ - ] 5 : 1  ~ c o s ( ( k  -q-- 1)x  + k ) , x  E 
[ - 1 0 ,  10]. 

T r a n s f o r m a t i o n  : a = - 10, b = 10, r a i n  = - 3 ,  m a x  = 4. 

C o n s t r a i n t  : g(x)  = - e  - x  s i n 2 7 r x ,  x E [0, 4]. 

T r a n s f o r m a t i o n :  a = - 1 0 ,  b = lO, m i n =  - 1 . 5 , m a x  = 1.5. 

S o l u t i o n  : x* = - 8 . 2 9 ,  z* = - 0 . 8 6 7 .  

V ~f ~ V 

Fig. 3 Problem 3. 

P r o b l e m  4. O b j e c t i v e  f u n c t i o n  : f ( x )  --- - x  + s in  3 x  - 1, x E [0, 6.5].  

T r a n s f o r m a t i o n "  a = - 10, b = 10, r a i n  = - 7 . 8 1 6 ,  m a x  = - 0 . 4 6 8 .  

C o n s t r a i n t "  g(x)  = - e - X 2 ( x  + s i n x ) ,  x E [ - 1 0 ,  10]. 

T r a n s f o r m a t i o n  : a = - 1 0 ,  b = 10, m i n  = - 4 ,  m a x  - -  6. 

S o l u t i o n  : x* = 1 .63,  z* = - 5 . 7 2 1 .  

f 

J 

Fig. 4. Problem 4. 
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P r o b l e m  5. Objec t ive  funct ion : f (x) - (x " z2 = - - s l n x ) e -  , x  E [ - - 1 0 , 1 0 ] .  

Trans fo rmat ion"  a = - 1 0 ,  b = 10, min  = - 2 ,  m a x  = 2. 
332 

Const ra in t"  g (x )  = - e -  (x + s m x ) , x  E [ - 1 0 ,  10]. 

Trans fo rmat ion"  a = - 10, b = 10, min  = - 4 ,  max  = 6. 

Solut ion : x* = 1.2, z* = - 2 .  

OF f 

Fig. 5 Problem 5. 

P r o b l e m  6. Object ive  func t ion"  f(x) = sin x + sin ~x,  x C [3.1,20.4] .  

Trans fo rmat ion"  e = 3.1, b = 20.4, min  = - 2 ,  max  = 6. 

Cons t ra in t"  f(x) = -~-~5=1 k c o s ( ( k  + 1)x + k), x E [ - 1 0 ,  10]. 

Trans format ion"  a = 3.1, b = 20.4,  min  = - 3 ,  m a x  = 12.86. 

So lu t ion"  x* = 16.65, z* = - 1.78. 

\ 
x__J I !  

Fig. 6. Problem 6. 
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TABLE I. Results of numerical experiments. 

417 

Problem PM IA New 

1 200* 75 65 
2 129 89 61 
3 162" 140 89 
4 200 200 61 
5 200 196 148 
6 200 200 106 

Average > 181.83 > 136.67 88.33 

We compare the new algorithm with two methods taken from literature and 
belonging to the class of information global optimization procedures. First of them 
is the basic information algorithm from [22] proposed for solving unconstrained 
problems. Our constrained problems are reduced to the unconstrained ones by the 
following penalty function 

F(x)  = f ( x )  + Pmax{O, g(x)}, 

where P is a penalty coefficient. This method is indicated by "PM" in Table 1 
containing numbers of trials executed by the algorithms before satisfaction of the 
stopping rule. The second method tested is the index algorithm proposed in [23]. 
It is indicated in Table 1 as "IA". 

We have chosen the following parameters for the algorithms. For PM reliability 
parameter r = 2 and P = 5. In the cases PM has not converged to the global 
solution of the constrained problem for P = 5 we used P = 10 and included in 
Table 1 results only for P = 10. These cases are indicated in the table by "*". The 
reliability parameters for the index algorithm and the new method have been also 
chosen r = 2. The parameter ~ = 10 -6. 

We stopped the search when the length of the interval where the next trial point 
should be executed was less than e = 0.001. If number of trials executed by a 
method exceeded 200 we stopped the search also. 

Results of numerical comparison presented in Table 1 demonstrate that the new 
algorithm solves problems 1-6 faster than the other methods tested. 

5. Conclusions 

A new algorithm for solving one-dimensional Lipschitz global optimization prob- 
lems with nonlinear constraints has been proposed in the paper. The index scheme 
has been applied to reduce the constrained problem to an unconstrained one. The 
main idea of the new method was to use local information about the behavior of the 
objective function and constraints over different sectors of the search region. Suf- 
ficient conditions of global convergence have been established for the algorithm. 
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Numerical experiments executed demonstrate quite satisfactory performance in 
comparison with the other techniques tested. 

The one-dimensional algorithm proposed here can be generalized to the multi- 
dimensional case following [17] and to the case of parallel computations (see 
[19, 24]). 
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